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Environmental vulnerability of the global ocean 
epipelagic plankton community interactome
Samuel Chaffron1,2*†, Erwan Delage1,2†, Marko Budinich2,3, Damien Vintache1, Nicolas Henry2,3, 
Charlotte Nef2,4, Mathieu Ardyna5,6, Ahmed A. Zayed7, Pedro C. Junger8, Pierre E. Galand2,9, 
Connie Lovejoy10, Alison E. Murray11, Hugo Sarmento8, Tara Oceans coordinators, 
Silvia G. Acinas12, Marcel Babin6,13, Daniele Iudicone14, Olivier Jaillon2,15, Eric Karsenti2,4, 
Patrick Wincker2,15, Lee Karp-Boss16, Matthew B. Sullivan7,17, Chris Bowler2,4, 
Colomban de Vargas2,3, Damien Eveillard1,2

Marine plankton form complex communities of interacting organisms at the base of the food web, which sustain 
oceanic biogeochemical cycles and help regulate climate. Although global surveys are starting to reveal ecologi-
cal drivers underlying planktonic community structure and predicted climate change responses, it is unclear how 
community-scale species interactions will be affected by climate change. Here, we leveraged Tara Oceans sam-
pling to infer a global ocean cross-domain plankton co-occurrence network—the community interactome—and 
used niche modeling to assess its vulnerabilities to environmental change. Globally, this revealed a plankton in-
teractome self-organized latitudinally into marine biomes (Trades, Westerlies, Polar) and more connected pole-
ward. Integrated niche modeling revealed biome-specific community interactome responses to environmental 
change and forecasted the most affected lineages for each community. These results provide baseline approach-
es to assess community structure and organismal interactions under climate scenarios while identifying plausible 
plankton bioindicators for ocean monitoring of climate change.

INTRODUCTION
Marine plankton and associated processes are at the core of global 
biogeochemical cycles, shaping ecosystem structure and influencing 
climate regulation (1). While global biodiversity maps for viruses, 
prokaryotes, and microbial eukaryotes are beginning to emerge 
(2–4), identifying and understanding the complex network of inter-
actions between these organisms and their environment is in its in-
fancy (5). These interactions are critical to establish the ecosystem 
trophic links that underpin biogeochemical cycles and feedbacks 
that drive climate regulation and response (6, 7). While abiotic fac-
tors, such as temperature, can explain a large fraction of microbial 

community composition in the global ocean (8), biotic interactions 
can differentially shape ecosystem diversity (9) and can even influ-
ence the adaptation to new environments (10). Thus, determining 
how plankton ecological interactions are structured and affected by 
environmental change remains a notable challenge.

Large-scale holistic marine ecosystem sampling facilitates con-
ceptualization of plankton community interactomes as co-occurrence 
networks that are useful to model the complex community structure 
of ecological associations (11, 12). These networks have enabled the 
detection of communities assembled through niche overlap across 
biomes (13) and also the prediction of putative interactions such 
as parasitism or symbioses (14). Likewise, plankton co-occurrence 
networks have been instrumental in detecting interrelated changes 
in community structure from surface to depth (15), as well as in 
identifying specific communities of key lineages (e.g., Synechococcus, 
its phages, and Collodaria) associated with global open ocean pro-
cesses such as carbon export (16). Community interactomes are also 
useful to identify central, highly connected lineages that may play 
significant ecological roles and confer stability to the community 
(17). These central lineages can correspond to keystone taxa that are 
good indicators of community shifts (18). Understanding the mech-
anisms affecting these central taxa may help us to predict responses 
of microbiome structure and functioning to perturbations (19).

While community interactomes inferred from global-scale sam-
plings summarize well the complexity and potential interactions 
within microbial assemblages (12), they usually do not reflect dy-
namic processes shaping the observed system, as measured by lon-
gitudinal high-frequency sampling (20). Thus, alternative strategies 
need to be developed to capture ecosystem dynamics and responses 
from spatial samplings. Plankton species display various ecological 
and evolutionary responses to global environmental change (21, 22). 
Within marine ecosystems, the interplay between species ecological 
niche and climate change can induce abrupt community shifts, 
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which may lead to long-term reconfiguration of marine metazoan 
communities or biodiversity rearrangements (23, 24). Recently, en-
vironmental drivers of ocean plankton diversity were inferred from 
Tara Oceans data and used to predict the effects of severe warming 
on surface ocean biodiversity (3). While species niche distribution 
models combined with climate models are useful to project fine-scale 
future distributions of species (25), species interactions are generally 
not included in these models (26), certainly due to our lack of 
knowledge about organismal interactions. Nevertheless, plankton 
network topological metrics can capture emergent properties (e.g., 
connectivity) relating to ecological characteristics of the community 
(27), which can serve as proxies of ecosystem and community-level 
resilience (28). Given that biotic interactions can influence species 
distributions at macroecological scales (29) and that climate change 
may cause trophic cascading effects on plankton community struc-
ture by directly affecting the top and bottom of marine food webs 
(30), ecological interactions need to be considered for assessing 
plankton community stability under climate change scenarios.

Here, we connected ecological and climate modeling by combin-
ing network analyses (31) with species niche models (32) into a com-
putational framework for predicting ecosystem-scale vulnerabilities 
to environmental change. By leveraging Tara Oceans data from all 
major oceanic provinces, including the Arctic Ocean, we inferred a 
comprehensive global ocean cross-domain plankton co- occurrence 
network from sequencing data. We built statistical niche models to 
predict realized niches of planktonic taxa, across kingdoms, and from 
pole to pole. These were then mapped onto the network and used to 
evaluate both local and global robustness of plankton community 
structures to simulated environmental changes. In addition, we in-
tegrated climate model projections [CMIP6 model (33) scenario 
SSP2-4.5] for predicting affected proportions of plankton taxonom-
ic groups, for which we considered environmental ranges corre-
sponding to global mean anomalies projected for the end of the 
century. Noticeable efforts have used the ecological niche concept 
to identify open ocean physical conditions governing phytoplank-
ton biogeography (34) and also to better formalize central biogeo-
chemical processes through the definition of key plankton 
functional types (35). The niche representation of planktonic diver-
sity affords a more effective integration of abiotic and biotic con-
straints to better predict perturbations of primary productivity under 
climate change scenarios (36).

RESULTS AND DISCUSSION
A cross-kingdom plankton interactome from pole to pole
To reconstruct a global marine plankton co-occurrence network 
across kingdoms of life, we analyzed data from 115 stations from 
the Tara Oceans expeditions (2009–2013) covering several organismal 
size fractions and all major oceanic provinces (37) across an exten-
sive latitudinal temperature gradient from pole to pole (Fig.  1A). 
Using a dedicated probabilistic learning algorithm (38) (see Materials 
and Methods), we predicted ecological interactions between plank-
ton taxa from compositional abundances inferred from sequencing 
data. The resulting integrated species association network [referred 
to as the Global Ocean Plankton Interactome (GPI)] counts a total 
of 20,810 nodes corresponding to operational taxonomic units 
(OTUs) and 86,026 edges corresponding to potential biotic interac-
tions (Fig. 1A). In comparison to a previous plankton interactome 
generated from Tara Oceans data (14), GPI doubled the number of 

recovered known interactions from the literature (see Supplemen-
tary Text). A vast majority of positive associations (98.5%) were pre-
dicted, probably underlying a prevalent role for biotic interactions 
in shaping marine plankton communities (14). Very few direct as-
sociations between OTUs and environmental parameters were de-
tected (n = 325; see Supplementary Text). However, by estimating 
robust ecological optima (niche value) and tolerance ranges (real-
ized niche widths) (39) for each OTU and environmental parameter 
(see Materials and Methods and table S3), we observed a strong in-
fluence of temperature in structuring predicted interactions (Fig. 1A). 
The GPI displayed a very high temperature optima assortativity co-
efficient (ACt = 0.87), which quantifies the tendency of nodes being 
connected to similar nodes (here with similar temperature niche 
optima) in a network. Thus, it confirms that the latitudinal tem-
perature gradient indirectly shapes the GPI (3) and demonstrates the 
substantial effect of both environmental forcing and habitat filter-
ing in structuring marine plankton communities at the global scale.

Abiotic factors differentially shape the plankton 
interactome structure
To further investigate the influence of abiotic factors in shaping the 
GPI structure, we extracted local subnetworks corresponding to po-
tential interactomes at each sampling site and computed graph to-
pological metrics. These local metrics (see Supplementary Text for 
a detailed description) were then correlated to environmental pa-
rameters (see Materials and Methods). The relationship between 
species diversity, network complexity, and ecological stability is a 
major topic of interest in ecology, and diverse relationships between 
complexity and stability have been observed in mutualistic networks 
(40). Here, we generally assumed that a higher connectivity would 
be associated to higher ecological stability and robustness, with 
highly connected communities being more persistent and resilient. 
Globally, the GPI network connectivity assessed by these metrics 
was negatively associated with temperature and salinity (Fig. 1B and 
Supplementary Text), pointing toward their potential impact in al-
tering the structure of predicted interactions (41). We also observed 
a differential association between temperature and interactome con-
nectivity in polar (fig. S1A; negative association trend with mean 
strength, Spearman rho = −0.37, P = 9.4 × 10−2) versus nonpolar 
regions (significant positive association with mean strength, Spearman 
rho = 0.43, P = 1.8 × 10−4). This difference may be linked to the obser-
vation that community turnover, which dominates in polar versus 
nonpolar prokaryotic communities (4), is accompanied by stronger 
biotic dependencies between species. It also suggests a potential role 
for temperature in reducing polar community connectivity in re-
sponse to ocean warming, which we modeled and discuss below.

Given the observed differential association between temperature 
and community structure along the latitudinal axis, we compared 
local interactome topological metrics across biomes (Fig. 1C). The 
network stability (mean weight) and connectivity (transitivity) were 
significantly higher for the polar biome compared to other marine 
biomes [Dunn’s test, false discovery rate (FDR) < 0.05 for all tests] 
and were associated with a lower mean (cross-domains) species di-
versity. This higher connectivity of the polar interactome is intriguing 
and suggests a more prevalent role of biotic interactions in structur-
ing less diverse plankton communities in the extreme polar envi-
ronment. A potential explanation for this higher connectivity may 
be the high abundance of ubiquitous diatoms in polar regions, which 
have been reported as selective segregators of global ocean plankton 

D
ow

nloaded from
 https://w

w
w

.science.org on Septem
ber 15, 2021



Chaffron et al., Sci. Adv. 2021; 7 : eabg1921     27 August 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

3 of 15

communities, displaying a very high proportion of associations with 
other organisms in a previous interactome (42). In addition, a po-
tential higher prevalence of mixotrophic plankton in the Arctic (e.g., 
mixotrophic flagellates and ciliates) may be responsible for enhanc-
ing the connectivity of polar trophic food webs (43). Alternatively, 
this higher connectivity may also reflect the more complex food web 
structures that vary across polar regions, although they are charac-
terized by specific pathways of energy flow dominated by a small 
number of species (44). Our observation may also be linked to the 
influence of temperature in globally shaping physiological and eco-
logical traits across levels of organization. The overall increase in 
traits performance for prey (relative to predators) at lower tempera-
ture (45) could result in a stronger predator-prey arms race and thus 
a potential higher connectivity in polar regions.

The lower plankton richness and diversity observed in polar eco-
systems have also been linked to maximal species turnover and 
environmental variability (46), which may translate into a higher 
detectable connectivity between distinct species in the polar inter-
actome. Here, we hypothesized that a higher species turnover and/or 
a higher environmental heterogeneity (despite lower diversity) may 
facilitate the detection of associations between organisms and thus 
explain the higher connectivity observed in the polar interactome. 
Nevertheless, the environmental heterogeneity of polar ecosystems 
may also result in higher heterogenous selection and community 
turnover, thus further increasing network connectivity. As recently 
proposed for a fluvial river system, environmental heterogeneity 
may determine the ecological processes assembling bacterial meta-
communities (47).

Fig. 1. Abiotic factors shape the pole-to-pole cross-domain plankton interactome structure. (A) The Tara Oceans circumnavigation (2009–2013) included a compre-
hensive metabarcoding and metagenomics sampling along with physicochemical parameter measurements covering a wide pole-to-pole latitudinal gradient of tem-
perature. The GPI covers the three domains of life including eukaryotes, bacteria, and archaea and is highly structured along the latitudinal gradient of temperature from 
the equator to the poles. It counts 20,810 nodes (and 86,026 edges) colored according to their optimum niche temperature. (B) The plankton interactome topology is 
significantly associated to diversity, temperature, salinity, light (PAR, photosynthetically available radiation), nutrient concentrations, and pH (Spearman correlations 
FDR < 0.01, empty boxes correspond to nonsignificant correlations). (C) The polar interactome displays stronger associations (mean edge weight) and clustering coeffi-
cients (transitivity) compared to other biomes (Dunn’s test, FDR < 0.05) despite its overall lower diversity.
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Biome-specific communities emerge from the  
plankton interactome
To further our understanding of the role of temperature in shaping 
the interactome structure along the latitudinal axis, we used an un-
supervised approach to delineate network communities and test 
their association with specific biomes. Using a deterministic com-
munity detection algorithm (see Materials and Methods), five com-
munities emerged from the GPI, which were enriched in OTUs 
assigned to specific biomes, and displayed distinct predicted biotic 
associations (Fig. 2). Through comparison of community abun-
dance profiles, these five communities were preferentially observed 
in specific biomes (Fig. 2A and table S4). GPI communities 0 and 3 
(TC0 and TC3) occurred preferentially in Trades stations, commu-
nity 2 (WC2) prevailed in Westerlies stations, while community 1 

(PC1) emerged in Polar stations. Community 4 (UC4) was more 
abundant in Polar stations but displayed a clear ubiquitous distribu-
tion. This unsupervised approach to community detection demon-
strates that the GPI is self-organized across marine biomes and that 
it captures the biogeography of cross-domain plankton associations. 
It also indicates that Longhurst’s primary biome partitioning (48), 
which is based on chlorophyll and phenology, is also biologically 
meaningful for planktonic associations across plankton domains 
and size spectra.

All GPI communities (with the exception of the ubiquitous UC4) 
displayed mostly exclusive associations, even at the high taxonomic 
level of the main planktonic lineages considered (Fig. 2B). All 
GPI communities differed in their associations (fig. S3), which 
were enriched between distinctive taxa (table S6). Most prevalent 
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Fig. 2. Biome-specific communities and associations emerge from the plankton interactome. (A) The GPI can be decomposed into five communities that are pref-
erentially observed in specific marine biomes: Communities TC0 and TC3 are Trades-like, community WC2 is Westerlies-like, community PC1 is Polar-like, and community 
UC4 is ubiquitous. Distinct main plankton lineage compositions are observed in each community along the latitudinal axis (stations are ordered by absolute latitude), 
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Shared associations between communities are indicated with black-filled circles and connecting lines.

D
ow

nloaded from
 https://w

w
w

.science.org on Septem
ber 15, 2021



Chaffron et al., Sci. Adv. 2021; 7 : eabg1921     27 August 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

5 of 15

associations in communities TC0, TC3, and WC2 (see Supplemen-
tary Text) included radiolarians (e.g., Spumellaria, Acantharea, and 
Collodaria) and Dinophyceae, detected in associations with parasitic 
organisms [e.g., marine alveolates (MALV); see Supplementary Text 
for details]. Both PC1 (Polar-like) and UC4 (ubiquitous) communities 
formed two distinct systems as compared to TC0, TC3, and WC2 
with respect to co-occurring lineages (fig. S3).

The PC1 community displayed a significantly lower contribu-
tion of MALV and was particularly enriched in Bacillariophyta 
(diatoms) associations not only with several eukaryotic lineages, 
including Ciliophora, Cryomonadida, Choanoflagellatea, and 
Mamiellophyceae, but also with bacterial lineages such as Bacteroidetes 
and Gammaproteobacteria, suggesting widespread diatom-bacteria 
interactions (49) in polar ecosystems. Bacillariophyta-Cryomonadida 
associations may correspond to ecologically important interactions 
in sea ice–influenced waters. Several Cryomonadida in cold waters 
can feed on diatoms, and some Cryothecomonas spp. are diatom 
parasitoids (50). In particular, we observed enriched associations 
between Bacillariophyta, Ciliophora, and Cercozoa in the PC1 com-
munity (fig. S4A and Supplementary Text). These results imply a 
broader range of potential interactions than previously thought 
between these groups and, in particular, regarding the diversity of 
diatom genera that can be infected by Cryomonadida and predated 
by Strombidium ciliates.

The UC4 community was significantly enriched in associations 
involving heterotrophic bacterial lineages (Alphaproteobacteria, 
Gammaproteobacteria, and Bacteroidetes) between themselves and 
with major phytoplankton taxa such as Dinophyceae, Haptophyta, 
and Bacillariophyta, among the most abundant photosynthetic 
eukaryotes (51). Notable UC4 overrepresented associations (table 
S6) included Haptophyta with MAST (marine stramenopiles) and 
MALV lineages, emphasizing the promiscuous nature of MALV 
parasitic interactions not only in tropical and temperate ecosystems 
(14) but also in polar regions. Several cross-domain associations 
were enriched in UC4, such as Bacillariophyta and Dinophyceae 
with Bacteroidetes, and Copepoda with Alphaproteobacteria, re-
vealing the pervasive role of phytoplankton- and zooplankton- 
bacteria ecological interactions (52) shaping the plankton microbiome 
from pole to pole. UC4-enriched associations also involved the 
most abundant bacterial taxa in the oceans, such as SAR11 (and 
SAR116), SAR86, Rhodobacterales, and Flavobacteria (53). This 
pattern (fig. S4B) may result from the competition for limiting re-
sources in which the same organic sources are consumed by these 
bacteria; this is the case, for instance, for dimethylsulfoniopropionate 
(DMSP), a chemical signalization molecule involved in microbial 
interactions in the ocean, as well as a carbon and sulfur source pref-
erentially consumed by SAR11, SAR86 (54), and Rhodobacterales 
(55). It has been shown that the degradation of dissolved organic 
matter is not dominated by one specific phylogenetic group but 
rather that different bacterioplankton have specialized in the degra-
dation of different compounds (56). Thus, the shared preference for 
these resources is not sufficient to explain the association patterns 
of these microbial taxa at the global scale. One interesting concept 
known as “division of labor” allows community microbes to survive 
with minimal energy resources by combining their metabolic activ-
ities, either by direct metabolite exchange or by syntrophy, where 
the receiver benefits from the opportunistic consumption of a met-
abolic by-product it is not able to produce, thus increasing the fit-
ness of the whole community (57). Bacterioplankton associations 

enriched in UC4 emphasize the nonrandom patterns of prokaryotic 
interactions, which appear to be shaped by a complex combination 
of competition and cooperation, from pole to pole. Core associa-
tions detected across all GPI communities were also identified (n = 
56; Fig. 2B) and reflected strong dependencies between clades that 
have coadapted to specific environmental conditions encountered 
in each biome. These core associations were dominated by MAST 
and MALV lineages, underlying their broad biogeography (58), and 
very successful adaptation from pole to pole, through grazing and 
parasitism, respectively.

Communities emerging from the GPI underline niche differen-
tiation by biome and imply that community-specific ecologically 
central species may be identified. To identify species whose impacts 
appear to be particularly important compared to their abundances, 
we computed the integrative general keystone index for each GPI 
community (59). Focusing on the ubiquitous UC4 community, the 
top 10 OTUs delineated by the index (table S7) included Eukarya 
(n = 6), among which several Copepoda (Cyclopoida, Corycaeus sp.) 
and Dinophyceae (Phalacroma, HM581743 sp.) taxa. It also included 
bacterial OTUs (n = 4) belonging to AEGEAN-169, NS5 marine 
group, Polaribacter, and SAR116 lineages. The AEGEAN-169 group 
was previously shown to be abundant and ecologically important at 
the San Pedro Ocean Time Series (SPOT) station (60). Polaribacter 
environmental genomes were recently shown to be prevalent and 
active in the euphotic zone at both poles (61).

Although each GPI community was more abundant in a given 
biome, their occurrence goes beyond these partitions, which proba-
bly reflects the importance of physical processes (e.g., advection by 
ocean currents) influencing their distribution through dispersal (62). 
This is also reflected by the biogeography of the WC2 community 
(Westerlies-like) and especially UC4 that is ubiquitous and appears 
to interface with other communities. The broader biogeography of 
these associations reflects the interconnected evolutionary history 
of phytoplankton- and zooplankton-bacteria ecological interactions 
and their pervasive role in influencing fundamental processes such 
as primary production, nutrient regeneration, and biogeochemical 
cycling (52) not only in low-nutrient regions of the ocean but also 
from pole to pole.

Community-specific vulnerabilities to environmental change
Given that the GPI captured the global biogeography of cross- 
domain plankton associations, we sought to investigate the potential 
influence of environmental change on community stability across 
biomes. Unlike previous studies that mapped global biodiversity 
and investigated ecological drivers, we used the GPI as a basis to 
develop a novel computational framework integrating OTU niche 
inference and community network analyses to assess how plankton 
communities and lineages may be affected under environmental 
change. First, for each OTU, we calculated the ecological optimum 
and tolerance range for a selection of environmental parameters in-
cluding salinity, nutrient concentrations (NO2+NO3, PO4), pH, and 
temperature. These abiotic factors are projected to change signifi-
cantly under ongoing climate change scenarios (36). For the tem-
perature niche, we observed smaller OTU tolerance ranges toward 
the poles and the equator (fig. S5), which supports the general as-
sumption of higher environmental stability and narrower tempera-
ture ecological niches in both Polar and Trades biomes compared to 
the Westerlies (48). The environmental optima and tolerance ranges 
of OTUs inform us about the realized ecological niches of the taxa 
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they represent and their potential sensitivity to environmental vari-
ations. OTUs from taxa with narrower tolerance ranges (i.e., spe-
cialists) are more likely to be affected by environmental changes, 
while OTUs from taxa with larger tolerance ranges (i.e., generalists) 
are more likely to be less sensitive to environmental changes. On the 
basis of this general assumption, we then simulated the effect of en-
vironmental changes on plankton interactome stability. Specifically, 
we perturbed GPI by progressively removing nodes ranked by their 
environmental tolerance ranges, from the narrower to the wider, for 
each parameter. We also attacked GPI’s nodes by their degree (i.e., 
from the most connected to the least connected nodes) to simulate 
the potentially most damaging perturbation of the network and 
repeated random attacks to obtain a random expectation refer-
ence. The GPI perturbations were systematically performed at 
the global scale to study both global and community-specific im-
pacts of these attacks on the stability of the network (see Materi-
als and Methods).

In response to in silico environmental perturbations, we observed 
an overall global robustness of the network (fig. S6). However, at 
the local scale, we found evidence for differential effects of specific 
abiotic factors on GPI communities (Fig.  3A). While the UC4 
(ubiquitous) community was found to be the least sensitive to sim-
ulated environmental changes (table S8; P > 1 × 10−2), community 
TC0 (Trades-like) displayed significant vulnerabilities (fig. S7A) to 
temperature (Wilcoxon rank test, P = 3.8 × 10−10), salinity (P = 3.8 × 
10−10), and PO4 (P = 4.5 × 10−6), as compared to random attacks. 
The TC3 community (Trades-like) also displayed a significant vul-
nerability to temperature (P = 1.7 × 10−3). The WC2 community 
(Westerlies-like) was predicted as being the most vulnerable (fig. S7B) 
to nutrient concentration changes (NO2 + NO3, P = 6.7 × 10−9; PO4, 
P = 5.2 × 10−9), while the PC1 community (Polar-like) displayed a 
clear vulnerability (Fig. 3B) to temperature (P = 3.8 × 10−10). These 
distinct predicted sensitivities of GPI communities imply that taxa 
represented by central, most connected OTUs display lower envi-
ronmental tolerance ranges for distinct abiotic factors in each com-
munity. Thus, these findings suggest that the plankton interactome 
will be affected differently by environmental change in specific eco-
logical marine regions, which are themselves predicted to be affected 
differently by warming and nutrient distributions (63). Both Trades 
communities (TC0 and TC3) appeared to be more sensitive to tem-
perature and, to a lesser extent, to salinity, which are both currently 
increasing in tropical ocean regions (64). On the other hand, the 
Westerlies community (WC2) appeared to be more vulnerable to 
nutrient concentration variations, which is a coherent scenario with 
climate change projections (36). These predictions also confirm the 
vulnerability of the Polar community (PC1) to temperature changes 
that are currently occurring with the rapid warming of the Arctic 
over recent decades and that is projected to be amplified (65).

Plankton lineages potentially most affected by 
environmental change
By combining environmental tolerance range inference with network 
stability analyses, plankton communities most affected by environ-
mental perturbations were predicted, as well as vulnerabilities of the 
respective plankton taxa and marine plankton groups (MPGs; see 
Materials and Methods). For temperature vulnerability predictions, 
we considered relatively abundant OTUs displaying a temperature 
niche width smaller than 2.1°C, which corresponds to the global 
mean sea surface temperature anomaly projected for the end of 

the century by the CMIP6 model scenario SSP2-4.5 (33). Marine 
plankton vulnerabilities to temperature, salinity, and nutrient con-
centration changes were predicted for communities TC0 and WC2 
(see Supplementary Text). Focusing on the PC1 polar community, 
which appeared to be the most sensitive to temperature change, we 
identified specific plankton lineages from all domains of life predicted 
to be affected (Fig. 4A). The bacterial phyla Verrucomicrobia and 
Marinimicrobia were found most sensitive with a vulnerable frac-
tion above 50%. Verrucomicrobia lineages are poorly characterized 
but are ubiquitous in the ocean and may be essential for the biogeo-
chemical cycling of carbon (66). Conversely, several Marinimicrobia 
clades have been shown to participate in the biogeochemical cycling 
of sulfur and nitrogen (67). Abundant eukaryotic lineages for which 
the vulnerable fraction was above 50% included Dinophyceae, 
Bacillariophyta, and Ciliophora, which are all key planktonic groups 
in the ocean, considerably affecting global biogeochemical cycles. All 
MAST groups, some of which are heterotrophic and bacterivorous 
flagellates that interact with key photosynthetic picoplankton (68), 
are also predicted to be significantly affected. When resolving PC1 
community lineages into MPGs (Fig. 4B), we predicted a large impact 
from temperature changes on Archaea, phototrophs, and phagotrophs, 
and in particular on gelatinous filter feeders. The critical role of ge-
latinous zooplankton within ocean trophic webs is increasingly be-
ing recognized as they may channel energy from picoplankton to 
higher trophic levels (69). The temperature sensitivity we predict 
for gelatinous filter feeders questions the paradigm that gelatinous 
zooplankton have been increasing in the past decades (70) and points 
toward the overall vulnerability of corresponding lineages to ocean 
warming in polar regions.

PC1 polar lineages predicted to be most sensitive to temperature 
were also identified at a lower taxonomic level (Fig.  4C) to infer 
potential species indicators of polar ecosystem change in response 
to ocean warming. Predicted bacterial genera as being most vulner-
able to temperature change in polar regions were Lentimonas and 
Methylotenera, along with several uncharacterized OTUs (n = 30). 
Lentimonas spp. are specialized degraders of fucoidans and other 
complex polysaccharides (71). Their observed sensitivity to tempera-
ture variations may increase the recalcitrance of algal biomass to 
microbial degradation, which would affect the turnover of carbon 
sequestered in glycans that is vital for global carbon cycling (72). 
Methylotrophs of the family Methylophilaceae play a crucial role in 
the carbon cycle of aquatic habitats (73), and several Methylotenera 
spp. isolates are methylotrophic bacteria that can use a range of one- 
carbon compounds in coastal ocean ecosystems (74). Thus, these 
two genera appear to encompass rather specialist microbes with re-
gard to their metabolism and are predicted to be affected by ocean 
warming in the polar ocean. Eukaryotic lineages predicted to be most 
sensitive to temperature included several abundant diatom genera: 
Chaetoceros, Porosira, Proboscia, and other genera belonging to 
Rhizosolenids and Mediophyceae. A single abundant genus of 
dinoflagellate was predicted to be affected by temperature change: 
Protoperidinium. For copepods, the genus Pseudocalanus and genera 
from the family Paracalanidae were found to be the most vulnera-
ble. Picomonadida was the only heterotrophic protist family pre-
dicted to be vulnerable to temperature change.

Monitoring pelagic ecosystems under environmental stress due 
to ongoing climate change is challenging, but plankton species indi-
cators may provide an accurate diagnosis of ecosystem health (75). 
Previous evidence suggests that the genera we predict as being 
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Fig. 3. Predicting ecological vulnerabilities via network-based simulations. (A) Environmental change simulations are performed through tolerance range perturba-
tions, which is progressively removing nodes of the GPI ranked by their environmental niche width (from smaller to larger), to predict ecological vulnerabilities of GPI 
communities. Significant vulnerabilities to environmental changes were determined by comparing distributions of the network natural connectivity (a graph robustness 
measure) evolution for each abiotic factor, as compared to a random perturbation. The ecological vulnerability of each GPI community was then quantified by the statis-
tical significance [−log(P)]. GPI communities TC0, TC3 (Trades-like), and PC1 (Polar) were predicted vulnerable to temperature change, while community WC2 (Westerlies- 
like) was predicted vulnerable to nutrient concentration variations. (B) The polar community (PC1) is predicted to be particularly vulnerable to temperature variations 
(Wilcoxon rank test, P = 3.8 × 10−10).
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most sensitive to temperature in polar ecosystems may be good 
candidates for plankton indicators of ocean warming. Chaetoceros 
constitutes a very large genus of marine planktonic diatoms and is a 
dominant component of phytoplankton communities contributing 
an estimated 20% of total oceanic primary production (76). Chaetoceros 
is abundant in polar oceans and is affected by temperature in labo-
ratory experiments (77). A species distribution model previously 
showed that the annual median probability of occurrence of anoth-
er diatom species Rhizosolenia stolterfothii was predicted to shift in 
the North Atlantic Ocean (21), suggesting that it, too, will be af-
fected by anthropogenic climate change. Considering copepods, the 

abundance of the genus Pseudocalanus has continuously decreased 
within a decade (2003–2012) in East Greenland waters (78). Another 
line of evidence for the temperature sensitivity of the predicted genera 
comes from mesocosm experiments, in which the relative biomass 
of a diatom from the genus Proboscia (Proboscia alata) was nega-
tively affected by temperature (79). As for dinoflagellates, a species 
of the genus Protoperidinium was shown to be less tolerant to pro-
longed temperature shifts in laboratory experiments (80).

Overall, these results underlie the differential responses of biome- 
specific plankton communities and associated functions to specific 
environmental changes. These findings provide new insights into 
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Fig. 4. Polar marine plankton lineages and groups predicted to be most vulnerable to temperature change. (A) Environmental tolerance range perturbations of the 
GPI predicted polar marine plankton lineages (community PC1) potentially most affected by temperature variations. (B) Grouping these lineages into MPGs predicted 
associated functions potentially most affected by temperature variations in the polar ecosystem. (C) Genera most impacted by temperature variations are also identified 
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community-specific environmental vulnerabilities of plankton lineages 
and associated functions. Plankton MPGs play central roles in the 
ecology and biogeochemistry of the polar (and global) oceans. Here, 
we predicted that specific plankton lineages and MPGs will be af-
fected, which has substantial implications and may even worsen 
under currently projected scenarios of climate change (33) in the 
Arctic and in nutrient-rich oceanic regions.

This study provides a comprehensive cross-kingdom plankton 
interactome covering all major oceanic provinces, including the 
Arctic Ocean, a region that has lacked systematic standardized sam-
pling. This global ocean ecological network constitutes an integrated 
resource to study plankton community structuring and prevalent 
planktonic associations across major marine biomes. Still, this re-
source is limited because predicted ecological associations do not 
demonstrate ecological interactions (81), and because it does not 
capture the dynamics of plankton interactions that are usually 
assessed using temporal or longitudinal samplings (82), nor the 
potential influence of horizontal gene transfer among plankton 
prokaryotes that may affect the stability of ecological interactions. 
Our knowledge of plankton microbiomes, symbioses, and host- 
parasite relationships remains limited (83). While planktonic inter-
actions remain challenging to validate, our predictions are useful to 
further our understanding of ecosystem functioning and may con-
stitute useful guidance for coculture experiments and a database for 
hypothesis testing. Today, high-throughput coculture experiments 
using microfluidics (84) and fabricated synthetic microbial ecosystems 
may help fill this gap (85).

Climate scenarios predict global changes in temperature, pH, 
and nutrient concentrations, which all greatly influence plankton 
physiology. Temperature can directly affect bacterial growth (86), 
grazing rates (87), and phytoplankton metabolism (88). Nitrogen 
availability is a primary limiting factor for marine phytoplankton 
(89). Ocean acidification caused by rising atmospheric CO2 can af-
fect phytoplankton growth rates and is predicted to have a greater 
impact than warming or reduced nutrient supply on plankton eco-
logical functions (90). Here, we identified and predicted distinct 
community vulnerabilities of the plankton interactome by studying 
its robustness to environmental perturbations. Overall, our findings 
imply differential effects of environmental change on biome-specific 
plankton communities resulting from biotic interactions and envi-
ronmental stresses. While the influence of temperature is central, at 
the biome-specific community scale, salinity and nutrient concen-
trations were found to significantly influence plankton community 
structures as well. These associations support previous lines of evi-
dence linking temperature and nutrient concentrations as the prin-
cipal drivers of microbial plankton community variability (91).

These findings further advocate for the development of novel 
modeling paradigms targeting multiple biological scales (92) from 
genes to species and community levels (93). Our computational 
framework combining network analyses with niche modeling is 
generalizable and can be applied to various microbial ecosystems 
for assessing and predicting robustness to environmental perturba-
tions. Here, specific lineage vulnerabilities were identified, but it 
remains an open question whether taxonomy, rather than function, 
is essential or not for predictive models given the potential func-
tional redundancy in open microbial systems (94). Similar studies 
should be performed at the genomic level given that the molecular 
functions rather than the microbes themselves sustain marine bio-
geochemical processes (95).

MATERIALS AND METHODS
Data description
From 2009 to 2013, the Tara Oceans expedition collected samples 
at more than 200 stations across all significant oceanic provinces 
from oligotrophic to polar regions. Sampling stations were selected 
to represent distinct marine ecosystems at global scale, for which the 
sampling strategy and the methodology have been previously described 
(96). Sample provenance is described in table S1. Environmental data 
measured or inferred at the depth of sampling are available in table 
S2 and published at PANGAEA, Data Publisher for Earth and 
Environmental Science (www.pangaea.de). In this study, we limited 
our analyses to the euphotic zone, including only the samples from 
surface (SRF) and the Deep Chlorophyll Maximum (DCM). Two 
prokaryote-enriched size fractions (0.2 to 1.6 m and 0.2 to 3 m) 
were available and included in the analyses. For eukaryotes, the fol-
lowing size fractions were included (and consolidated as described 
below) in the analyses: “0.8 to 5 m and 0.8 to 2000 m,” “3 to 20 m and 
5 to 20 m,” “20 to 180 m,” and “180 to 2000 m.” Because of these 
sampling constraints and the nonsystematic sequencing of all avail-
able samples, the Tara Oceans dataset is heterogeneous. Specifically, 
at polar stations, fractions 0.8 to 5 m and 5 to 20 m are less rep-
resented. Conversely, in nonpolar stations, sequencing data for the 
fraction 3 to 20 m are nearly absent. To overcome this issue and 
increase sampling coverage, we considered that fractions 3 to 20 m 
(for Arctic samples) and 5 to 20 m (for non-Arctic samples) were 
equivalent, as well as fractions 0.8 to 5 m and 0.8 to 2000 m, as 
samples from these latter size fractions captured very similar diver-
sity and community composition (fig. S11). When both size frac-
tions were available for the same sampling site, the 0.8 to 5 m size 
fraction was preferred. For the 3 to 20 m/5 to 20 m size fractions, 
only one station (TARA_124_SRF) was found to be in conflict, and 
we discarded the 3 to 20 m sample. By doing so, we analyzed 115 
sampling sites at which all considered size fractions were available.

Data processing and taxonomic annotations
For the prokaryote-enriched size fraction (0.2 to 1.6 m and 0.2 to 
3 m), taxonomic profiling was performed using 16S ribosomal gene 
fragments directly identified in Illumina-sequenced metagenomes 
(4). To profile taxonomic abundances from metagenomes using a 
reference-based method, two goals need to be achieved: (i) The ref-
erence database needs to be a balanced representation of the diver-
sity space, and thus, the under-/overrepresentation of some taxa in 
the database needs to be corrected, which can be done by defining 
OTUs at a higher level (e.g., at genus level); (ii) the taxonomical 
units to be detected (if not defined in the database) need to be de-
fined, which is the case in the SILVA database that is cataloguing 
reference sequences at the species and strain levels. Thus, we per-
formed a preclustering of the SILVA database. By preclustering, OTUs 
at 97% similarity, OTUs are defined above the genus level, which 
also serves to balance the unequal representation of different taxa in 
the database. The 97% identity cutoff for the full 16S ribosomal RNA 
(rRNA) sequence was chosen as it matches the classical definition of 
16S OTUs. Then, extracted 16S reads, named miTags, were mapped 
to cluster centroids of taxonomically annotated 16S rRNA gene ref-
erence sequences from the SILVA database (59) (release 128: SSU 
Ref NR 99), which had been clustered at 97% sequence identity be-
forehand using USEARCH v9.2.64. Additional methodological de-
tails are available in (4), and we used the OTU-level abundance 
matrix as provided by the authors. For the eukaryotic taxonomic 
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profiling, we used metabarcoding data with the same methodology 
as in (58) to define OTUs. 18S rRNA gene V9 amplicons were clus-
tered with the Swarm version 2.1.1 (with fastidious option, and 
d = 1) (97) and taxonomically and functionally annotated by global 
pairwise alignment (vsearch -usearch_global command) against an 
updated version (available at http://doi.org/10.5281/zenodo.3768951) 
of the PR2_V9 reference database (3). 18S rRNA gene V9 region 
polymerase chain reaction (PCR) primers also amplify some 16S rRNA 
gene V9; thus, we decided to filter out OTUs not assigned to eukaryotic 
reference sequences with more than 80% of identity ( “Bacteria”: 
35,448 OTUs, “unassigned”: 31,406 OTUs, “Archaea”: 1806 OTUs, 
“root”: 58 OTUs, and “Organelle”: 583 OTUs). For the prokaryotic 
abundance matrix, we filtered out miTags assigned to “Eukaryota” 
(5283 OTUs), Chloroplast (468 OTUs), and Mitochondria (74 OTUs). 
After this filtering, we worked with six distinct matrices corre-
sponding to each size fraction considered (see the Supplementary 
Materials).

On the basis of these taxonomic affiliations, we classified all taxa 
into MPGs as in (3). For prokaryotes, photosynthetic bacteria (i.e., 
cyanobacteria) were distinguished from heterotrophic/chemotrophic 
bacteria and archaea. For protists, the functional annotations of 
PR2_V9 (http://doi.org/10.5281/zenodo.3768951) were used. It en-
compasses a wide variety of protist taxa that are assigned to major 
functional groups: photosynthetic/mixotrophic protists, endopho-
tosymbionts, hosts with endophotosymbionts (photohosts), parasitic 
protists, and free-living heterotrophs or phagotrophs (heterotrophic 
protists). For the mesozooplankton, the categories used corresponded 
to the most abundant taxonomic groups (such as copepods and 
chaetognaths) or feeding strategies.

Shannon diversity indices were calculated for each sample and 
provided by (3).

Data transformation and filtering
All OTU abundance matrices were transformed using the centered 
log-ratio (CLR) transformation (98), while environmental parame-
ters were standardized (or z-transformed), thus ensuring the nor-
mal distribution of the data. This is important, as FW (FlashWeave) 
was run in sensitive mode (see below) and thus computes partial 
correlation tests with Fisher’s z-transformation, which assume fea-
tures to be multivariate Gaussian distributed in CLR-transformed 
space. The CLR transformation is widely used in microbiome data 
analysis, especially in association network reconstruction (99), as it 
copes with the compositional nature of microbiome data. As log 
transformation cannot be applied to zero values, we added before-
hand a pseudo count of one to all elements of the matrix. Last, to 
reduce the high dimensionality of our data, which may be the source 
of false-positive predicted associations, we filtered each abundance 
matrix using a top-quartile filtering approach. For each sample, the 
upper quartile (Q3) of its nonzero abundance values was computed. 
An OTU was retained when its observed abundance was higher than 
Q3 in at least five samples.

Network inference and stability procedure
The network inference was performed using FW v0.13.1 with de-
fault parameters (38). FW relies on the local-to-global learning frame-
work and infers direct associations by searching for conditional 
dependencies between OTUs. Several heuristics are then applied to 
connect these “local” dependencies and infer a network. FW is sig-
nificantly faster than other methods while achieving better or similar 

results and gives the possibility to include metavariables (such as 
the temperature). Although the latter feature seemed appealing, very 
few OTU-environmental factor associations were detected, which 
advocates for developing a complementary approach to study the 
environmental influence (see the section, “Network-based robustness 
analyses”). While FW includes a heterogeneous mode (FlashWeave-
HE) and the Tara dataset is heterogenous itself, the low number of 
samples prevented its use. Thus, we used FW in “sensitive” mode 
without its embedded normalization because it was performed up-
stream to comply to our network inference strategy designed to deal 
with the multiple size fractions context described below.

We reconstructed graphs for each size fraction separately, run-
ning FW on the corresponding CLR-transformed abundance ma-
trix. This first step only allows to discover intrafraction edges. To 
connect together the five resulting graphs and thus infer interfrac-
tion edges, we considered all 10 combinations of two size fractions 
and ran FW on the according concatenated matrices. This results in 
a metagraph, with OTUs from different size fractions being con-
nected together.

To assess the robustness of intra- and interfraction edges and 
reduce the number of putative false-positive associations, we imple-
mented a stability procedure inspired by the STARS model selec-
tion approach (100). As we did for two size fractions matrices, we 
built every combination of three size fractions matrices and obtained 
10 three-fractions graphs. We then evaluated the stability of every 
metagraph edge by computing its frequency in the three-fractions 
graphs. This procedure computes a relative stability metric reflect-
ing a given edge robustness to variation in both the number of sam-
ples and the number of OTUs. Edges with relative stability below 
50% were removed from the metagraph.

Estimation of FDR
Three null models were generated using two R packages (picante 
v1.7 and HMP v1.6). The HMP library provides the Dirichlet.mul-
tinomial function, which allows data matrix generation of OTUs 
following a Dirichlet distribution. Picante comes with a random-
izeMatrix function and several methods to randomize the matrix. 
We used the frequency (that maintains OTU occurrence frequency) 
and trialswap (maintaining OTU occurrence frequency and sample 
OTU richness) approaches. Then, networks were inferred from these 
matrices using FW and the same procedure as for the observed ma-
trices. We then estimated an FDR by comparing common edges 
between the observed and simulated networks. The highest FDR we 
obtained was 3.6% (with a number of iterations set to 108) using the 
trialswap method.

Literature-based validation of predicted interactions
To compare the performance and sensitivity of FW to similar co- 
occurrence network inference methods such as SPIEC-EASI (99), 
we estimated the graph accuracy by comparing edges with known 
(marine) biotic interactions. We limited our comparisons to Polar 
networks and compared edges with known interactions from the 
PIDA (83) (https://github.com/ramalok/PIDA) and GLOBI (101) 
databases (www.globalbioticinteractions.org/). We used the Na-
tional Center for Biotechnology Information (NCBI) taxonomy for 
prokaryotes and PR2 taxonomy for eukaryotes to identify super-
kingdom, family, genus, and species levels. Then, we searched for 
known interactions from these databases in the networks by detecting 
all combinations of OTUs at the four taxonomic levels considered 
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(fig. S12). Conserved associations across taxonomy ranks were esti-
mated as follows. First, taxonomic ranks were extracted from NCBI 
Taxonomy database for prokaryotes and from PR2 database for eu-
karyotes. Next, for each pair of ranks, we counted the number of edges 
between nodes of each rank. Next, we repeated the procedure but now 
applied to the subnetwork induced by considering only nodes from a 
particular biome. Last, we calculated the proportion of edges for each 
rank pair in each biome with respect to the total network.

Station-specific network extraction
To further explore the association between plankton community 
structures and abiotic factors, we extracted sampling station-specific 
subnetworks corresponding to local GPI interactomes containing 
only nodes of OTUs detected at a given sampling station. This pro-
cedure enabled the computation of graph topological metrics (mean 
degree, edge density, mean weight, mean strength, and transitivity) 
for each sampling station and enabled us to directly associate envi-
ronmental parameters to local community structures.

Marine biome assignations to OTUs
In the Tara Oceans dataset, each sample is associated with one spe-
cific marine biome (Coastal, Trades, Westerlies, or Polar). Using this 
information, we assigned each OTU to a biome or a combination of 
biomes according to its abundance profile. We did this by identify-
ing biome(s) in which a given OTU is overrepresented, based on 
relative abundance, compared to other biomes using a Kruskal- 
Wallis (KW) test implemented in the Python package SciPy (ver-
sion 1.2.1). Adjustments for multiple testing were performed using 
the Benjamini-Hochberg (BH) procedure implemented in statsmodels 
(version 0.9.0). For significant tests (FDR < 0.05), a post hoc Dunn’s 
test implemented in scikit-posthocs (version 0.6.1) was performed 
to determine in which biome(s) a given OTU was significantly over-
represented (FDR < 0.05). To determine the direction of the over- 
representation, we compared the mean values to identify and discard 
the “lower mean biome(s)” from the list of the OTU-associated biomes. 
In the GPI, we were able to assign biome(s) to a significant fraction 
of OTUs (41.1%). Numerical and categorical assortativities were 
determined with the corresponding functions from networkx 2.3.

Network community detection and biome assignation 
to communities
We detected five communities in the GPI using an eigenvector-based 
network community detection algorithm (102) implemented in the 
networkx 2.3 python package. To assign biomes to these communi-
ties, OTU abundance tables were CLR-transformed and aggregated by 
community for each size fraction. CLR values for each community 
were grouped by biome, and a KW test was run to verify mean differ-
ences of communities among biomes (KW test column in table S4). As 
all P values were significant while controlling the FDR using the BH 
procedure, post hoc Dunn tests were performed to detect community 
pairwise differences between biomes (Dunn test P value columns in 
table S4). Biomes that were found significantly lower via the Dunn test 
were discarded from the biome assignation (Dunn test z score column 
in table S4). The five GPI communities were found prevalent in the 
Polar (n = 2), Westerlies (n = 1), or Trades (n = 2) biomes.

Environmental optimum and tolerance range inference
Environmental optimum and tolerance range were calculated with 
the robust optimum method described in (39). For each OTU and a 

selection of environmental parameters, we determined the ecologi-
cal optimum reflecting the optimal OTU living conditions relative 
to a given environmental parameter and a tolerance range around 
this optimum defined by lower and upper bounds. Here, Total Sum 
Scaling (i.e., read count divided by the total number of reads in each 
sample) normalization was applied to raw matrices to weight these 
optima and ranges by relative OTU abundances across sampling 
stations. For each OTU, the proportion of observed counts in a given 
sample is computed relatively to all samples. We use these propor-
tions to fill a weighted vector of a fixed size (n = 10,000) with envi-
ronmental values accordingly (i.e., if the proportion of observed 
counts for OTU1 in sample 1 represents 5% of the OTU1 abun-
dance across all samples, then the weighted vector will be filled at 
5% with the environmental value measured for sample 1). The eco-
logical optimum is then defined as the median value (Q2) of this 
vector, the lower and upper limits as the first (Q1) and third quartile 
(Q3), respectively, and the tolerance (niche) range is given by the 
interquartile range (Q3 to Q1). Some environmental parameter val-
ues are missing [nonavailable (NA)] for some samples. To avoid 
inferring spurious ecological optima and tolerance ranges for OTUs 
for which many values are missing, we set a minimum threshold of 
10 OTU observations with non-NAs and overall with a minimum 
of 30% non-NA values for it to be computed.

General keystone index
The generalized keystone index (59) combines several centrality 
metrics in a single measure, which can then be used to rank nodes, 
revealing their topological importance in the network. Degree, be-
tweenness, closeness, and subgraph centralities have been calculated 
using the Python library networkx (version 2.3), capturing the rele-
vance of each node at different topological scales. Factor analysis 
was performed with the Python library sklearn (version 0.20.3) on 
those centralities to get the generalized keystone index associated 
with each node.

Network-based robustness analyses
To simulate the effects of environmental change and predict their 
impact on the stability of plankton community structures, we de-
signed a network attack procedure mimicking the potential effect of 
each environmental parameter’s variations onto the GPI. We pro-
gressively removed network nodes by bins (n = 200 nodes until the 
10,000th node and then n = 1000 nodes) corresponding to environ-
mental ranges, ordered from the smallest to the largest tolerance 
ranges for each parameter (within a given range, the nodes are ran-
domly sorted). At each step, we computed the graph natural con-
nectivity (103), a graph robustness metric, for the global interactome 
and for subgraphs corresponding to communities extracted from 
the GPI (see the “Network community detection and biome assig-
nation to communities” section). By doing so, we could evaluate the 
vulnerability (or loss of robustness/stability) of the GPI at the global 
and community levels and detect OTUs and lineages that were ac-
tually targeted/affected first in the process.

Temperature and nutrient concentration changes are generally 
not independent; temperature increases metabolic rates, which may, 
in turn, increase nutrient uptake and cycling through the food web. 
Thus, both parameters may show a synergistic effect on plankton 
community structure (104). The potential for this abiotic synergy 
points toward a limitation of our in silico perturbation experiments 
because we did not integrate per se the whole set of environmental 
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parameters that are necessary to properly define the ecological niche 
of a given OTU—nor the synergistic interactions between them. 
While an equal combination of different environmental tolerances 
can be assumed to define a niche (i.e., the cardinal product of limit-
ing abiotic factors), we argue that this would bias our predictions 
because plankton species are differentially adapted and respond to 
environmental conditions. Lineage-specific adaptation may explain 
the differential sensitivity in the Polar biome, where temperature is 
significantly lower compared to nonpolar regions, and in the Westerlies 
biome, where nutrients are usually not limiting factors as compared 
to the Trades biome.

Predicting most vulnerable community lineages and MPGs
To predict community-specific groups (marine plankton lineages 
and MPGs) most vulnerable to environmental change, we focused 
on most “abundant” OTUs, for which the total mean abundance 
was above 0.001. This cutoff corresponds to the mean relative abun-
dance of all groups. The proportion of affected groups was comput-
ed as the factor between the total mean abundance and the affected 
mean abundance of a given group. For computing these affected 
proportions, we limited ourselves to environmental ranges cor-
responding to global mean anomalies projected for the end of the 
century by the CMIP6 model scenario SSP2-4.5 (33). Thus, environmen-
tal ranges considered here were 2.1°C for temperature, 0.5 PSS-78 
for salinity, 0.7 M for NO2, and 1.0 M for PO4.

Statistical analyses
Spearman correlations, followed by BH procedure (FDR < 0.01), were 
performed to test associations between network topology metrics 
and environmental parameters (Fig. 2A). KW tests followed by post 
hoc Dunn’s tests were performed using R (version 3.2.2) to deter-
mine significant differences across biome-specific interactome topo-
logical metrics (Fig. 2C). A Pearson’s chi-square test was performed 
to detect taxa associations enriched in each interactome community 
(fig. S3). Here, only pairs of taxa that co-occur in at least three com-
munities and occur at minimum 50 times in total were tested. For 
these pairs, we performed a post hoc analysis for Pearson’s chi-
square test on the residuals using the chisq.posthoc.test R package 
(https://chisq-posthoc-test.ebbert.nrw/) to identify within each com-
munity taxa pairs with a number of associations significantly di-
verging from random expectation. Wilcoxon’s rank sum tests were 
performed to compare distributions of natural connectivity for 
network environmental perturbations versus random perturba-
tions (Fig. 3).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/35/eabg1921/DC1

View/request a protocol for this paper from Bio-protocol.
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